Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 8(90): eadd5724, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134242

RESUMO

Tissue-resident CD8+ T cells (TRM) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that TRM lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland TRM autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland TRM locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca2+ signaling pathway. By contrast, naïve CD8+ T cells or TRM surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland TRM scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Glândulas Exócrinas , Transdução de Sinais
2.
iScience ; 26(10): 107695, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37822497

RESUMO

Naive T lymphocytes traffic through the organism in search for antigen, alternating between blood and secondary lymphoid organs. Lymphocyte homing to lymph nodes relies on CCL21 chemokine sensing by CCR7 receptors, while exit into efferent lymphatics relies on sphingolipid S1P sensing by S1PR1 receptors. While both molecules are claimed chemotactic, a quantitative analysis of naive T lymphocyte migration along defined gradients is missing. Here, we used a reductionist approach to study the real-time single-cell response of naive T lymphocytes to CCL21 and serum rich in bioactive S1P. Using microfluidic and micropatterning ad hoc tools, we show that CCL21 triggers stable polarization and long-range chemotaxis of cells, whereas S1P-rich serum triggers a transient polarization only and no significant displacement, potentially representing a brief transmigration step through exit portals. Our in vitro data thus suggest that naive T lymphocyte chemotax long distances to CCL21 but not toward a source of bioactive S1P.

3.
Front Immunol ; 14: 1242531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554323

RESUMO

Immune responses highly depend on the effective trafficking of immune cells into and within secondary lymphoid organs (SLOs). Atypical chemokine receptors (ACKRs) scavenge chemokines to eliminate them from the extracellular space, thereby generating gradients that guide leukocytes. In contrast to canonical chemokine receptors, ACKRs do not induce classical intracellular signaling that results in cell migration. Recently, the closest relative of ACKR3, GPR182, has been partially deorphanized as a potential novel ACKR. We confirm and extend previous studies by identifying further ligands that classify GPR182 as a broadly scavenging chemokine receptor. We validate the "atypical" nature of the receptor, wherein canonical G-protein-dependent intracellular signaling is not activated following ligand stimulation. However, ß-arrestins are required for ligand-independent internalization and chemokine scavenging whereas the C-terminus is in part dispensable. In the absence of GPR182 in vivo, we observed elevated chemokine levels in the serum but also in SLO interstitium. We also reveal that CXCL13 and CCL28, which do not bind any other ACKR, are bound and efficiently scavenged by GPR182. Moreover, we found a cooperative relationship between GPR182 and ACKR3 in regulating serum CXCL12 levels, and between GPR182 and ACKR4 in controlling CCL20 levels. Furthermore, we unveil a new phenotype in GPR182-KO mice, in which we observed a reduced marginal zone (MZ), both in size and in cellularity, and thus in the T-independent antibody response. Taken together, we and others have unveiled a novel, broadly scavenging chemokine receptor, which we propose should be named ACKR5.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Transdução de Sinais , Animais , Camundongos , Ligantes , Receptores de Quimiocinas/metabolismo
4.
Front Immunol ; 14: 1133394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153591

RESUMO

Atypical chemokine receptors (ACKRs) form a small subfamily of receptors (ACKR1-4) unable to trigger G protein-dependent signaling in response to their ligands. They do, however, play a crucial regulatory role in chemokine biology by capturing, scavenging or transporting chemokines, thereby regulating their availability and signaling through classical chemokine receptors. ACKRs add thus another layer of complexity to the intricate chemokine-receptor interaction network. Recently, targeted approaches and screening programs aiming at reassessing chemokine activity towards ACKRs identified several new pairings such as the dimeric CXCL12 with ACKR1, CXCL2, CXCL10 and CCL26 with ACKR2, the viral broad-spectrum chemokine vCCL2/vMIP-II, a range of opioid peptides and PAMP-12 with ACKR3 as well as CCL20 and CCL22 with ACKR4. Moreover, GPR182 (ACKR5) has been lately proposed as a new promiscuous atypical chemokine receptor with scavenging activity notably towards CXCL9, CXCL10, CXCL12 and CXCL13. Altogether, these findings reveal new degrees of complexity of the chemokine network and expand the panel of ACKR ligands and regulatory functions. In this minireview, we present and discuss these new pairings, their physiological and clinical relevance as well as the opportunities they open for targeting ACKRs in innovative therapeutic strategies.


Assuntos
Relevância Clínica , Transdução de Sinais , Ligantes , Quimiotaxia , Ligação Proteica
5.
PLoS One ; 18(5): e0285597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252916

RESUMO

Atypical chemokine receptor 3 (ACKR3) is a scavenger of the chemokines CXCL11 and CXCL12 and of several opioid peptides. Additional evidence indicates that ACKR3 binds two other non-chemokine ligands, namely the peptide hormone adrenomedullin (AM) and derivatives of the proadrenomedullin N-terminal 20 peptide (PAMP). AM exhibits multiple functions in the cardiovascular system and is essential for embryonic lymphangiogenesis in mice. Interestingly, AM-overexpressing and ACKR3-deficient mouse embryos both display lymphatic hyperplasia. Moreover, in vitro evidence suggested that lymphatic endothelial cells (LECs), which express ACKR3, scavenge AM and thereby reduce AM-induced lymphangiogenic responses. Together, these observations have led to the conclusion that ACKR3-mediated AM scavenging by LECs serves to prevent overshooting AM-induced lymphangiogenesis and lymphatic hyperplasia. Here, we further investigated AM scavenging by ACKR3 in HEK293 cells and in human primary dermal LECs obtained from three different sources in vitro. LECs efficiently bound and scavenged fluorescent CXCL12 or a CXCL11/12 chimeric chemokine in an ACKR3-dependent manner. Conversely, addition of AM induced LEC proliferation but AM internalization was found to be independent of ACKR3. Similarly, ectopic expression of ACKR3 in HEK293 cells did not result in AM internalization, but the latter was avidly induced upon co-transfecting HEK293 cells with the canonical AM receptors, consisting of calcitonin receptor-like receptor (CALCRL) and receptor activity-modifying protein (RAMP)2 or RAMP3. Together, these findings indicate that ACKR3-dependent scavenging of AM by human LECs does not occur at ligand concentrations sufficient to trigger AM-induced responses mediated by canonical AM receptors.


Assuntos
Adrenomedulina , Células Endoteliais , Receptores CXCR , Humanos , Adrenomedulina/genética , Quimiocina CXCL11 , Células Endoteliais/metabolismo , Células HEK293 , Hiperplasia , Receptores de Adrenomedulina , Receptores CXCR/genética
6.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675182

RESUMO

Chemokines are critically involved in controlling directed leukocyte migration. Spatiotemporal secretion together with local retention processes establish and maintain local chemokine gradients that guide directional cell migration. Extracellular matrix proteins, particularly glycosaminoglycans (GAGs), locally retain chemokines through electrochemical interactions. The two chemokines CCL19 and CCL21 guide CCR7-expressing leukocytes, such as antigen-bearing dendritic cells and T lymphocytes, to draining lymph nodes to initiate adaptive immune responses. CCL21-in contrast to CCL19-is characterized by a unique extended C-terminus composed of highly charged residues to facilitate interactions with GAGs. Notably, both chemokines can trigger common, but also ligand-biased signaling through the same receptor. The underlying molecular mechanism of ligand-biased CCR7 signaling is poorly understood. Using a series of naturally occurring chemokine variants in combination with newly designed site-specific chemokine mutants, we herein assessed CCR7 signaling, as well as GAG interactions. We demonstrate that the charged chemokine C-terminus does not fully confer CCL21-biased CCR7 signaling. Besides the positively charged C-terminus, CCL21 also possesses specific BBXB motifs comprising basic amino acids. We show that CCL21 variants where individual BBXB motifs are mutated retain their capability to trigger G-protein-dependent CCR7 signaling, but lose their ability to interact with heparin. Moreover, we show that heparin specifically interacts with CCL21, but not with CCL19, and thereby competes with ligand-binding to CCR7 and prevents signaling. Hence, we provide evidence that soluble heparin, but not the other GAGs, complexes with CCL21 to define CCR7 signaling in a ligand-dependent manner.


Assuntos
Movimento Celular , Quimiocina CCL21 , Heparina , Leucócitos , Receptores CCR7 , Movimento Celular/imunologia , Quimiocina CCL21/imunologia , Glicosaminoglicanos , Heparina/farmacologia , Ligantes , Receptores CCR7/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia
7.
BMC Biol ; 20(1): 189, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002835

RESUMO

BACKGROUND: T cell activation leads to increased expression of the receptor for the iron transporter transferrin (TfR) to provide iron required for the cell differentiation and clonal expansion that takes place during the days after encounter with a cognate antigen. However, T cells mobilise TfR to their surface within minutes after activation, although the reason and mechanism driving this process remain unclear. RESULTS: Here we show that T cells transiently increase endocytic uptake and recycling of TfR upon activation, thereby boosting their capacity to import iron. We demonstrate that increased TfR recycling is powered by a fast endocytic sorting pathway relying on the membrane proteins flotillins, Rab5- and Rab11a-positive endosomes. Our data further reveal that iron import is required for a non-canonical signalling pathway involving the kinases Zap70 and PAK, which controls adhesion of the integrin LFA-1 and eventually leads to conjugation with antigen-presenting cells. CONCLUSIONS: Altogether, our data suggest that T cells boost their iron importing capacity immediately upon activation to promote adhesion to antigen-presenting cells.


Assuntos
Receptores da Transferrina , Transferrina , Endocitose/fisiologia , Endossomos/metabolismo , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Linfócitos T , Transferrina/metabolismo
8.
Front Immunol ; 13: 913366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769489

RESUMO

Chemokine-guided leukocyte migration is a hallmark of the immune system to cope with invading pathogens. Intruder confronted dendritic cells (DCs) induce the expression of the chemokine receptor CCR7, which enables them to sense and migrate along chemokine gradients to home to draining lymph nodes, where they launch an adaptive immune response. Chemokine-mediated DC migration is recapitulated and intensively studied in 3D matrix migration chambers. A major caveat in the field is that chemokine gradient formation and maintenance in such 3D environments is generally not assessed. Instead, fluorescent probes, mostly labelled dextran, are used as surrogate molecules, thereby neglecting important electrochemical properties of the chemokines. Here, we used site-specifically, fluorescently labelled CCL19 and CCL21 to study the establishment and shape of the chemokine gradients over time in the 3D collagen matrix. We demonstrate that CCL19 and particularly CCL21 establish stable, but short-distance spanning gradients with an exponential decay-like shape. By contrast, dextran with its neutral surface charge forms a nearly linear gradient across the entire matrix. We show that the charged C-terminal tail of CCL21, known to interact with extracellular matrix proteins, is determinant for shaping the chemokine gradient. Importantly, DCs sense differences in the shape of CCL19 and CCL21 gradients, resulting in distinct spatial migratory responses.


Assuntos
Células Dendríticas , Dextranos , Movimento Celular , Quimiocinas/metabolismo , Dextranos/metabolismo , Receptores CCR7/metabolismo
9.
Cells ; 11(9)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563750

RESUMO

The chemokine receptor CCR7, together with its ligands, is responsible for the migration and positioning of adaptive immune cells, and hence critical for launching adaptive immune responses. CCR7 is also induced on certain cancer cells and contributes to metastasis formation. Thus, CCR7 expression and signalling must be tightly regulated for proper function. CCR7, like many other members of the G-protein coupled receptor superfamily, can form homodimers and oligomers. Notably, danger signals associated with pathogen encounter promote oligomerisation of CCR7 and is considered as one layer of regulating its function. Here, we assessed the dimerisation of human CCR7 and several single point mutations using split-luciferase complementation assays. We demonstrate that dimerisation-defective CCR7 mutants can be transported to the cell surface and elicit normal chemokine-driven G-protein activation. By contrast, we discovered that CCR7 mutants whose expression are shifted towards monomers significantly augment their capacities to bind and internalise fluorescently labelled CCL19. Modeling of the receptor suggests that dimerisation-defective CCR7 mutants render the extracellular loops more flexible and less structured, such that the chemokine recognition site located in the binding pocket might become more accessible to its ligand. Overall, we provide new insights into how the dimerisation state of CCR7 affects CCL19 binding and receptor trafficking.


Assuntos
Quimiocina CCL21 , Transdução de Sinais , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiocina CCL21/farmacologia , Humanos , Ligantes , Ligação Proteica , Receptores CCR7/genética , Receptores CCR7/metabolismo
10.
Cell Rep ; 38(5): 110334, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108538

RESUMO

T cell migration via afferent lymphatics to draining lymph nodes (dLNs) depends on expression of CCR7 in T cells and CCL21 in the lymphatic vasculature. Once T cells have entered lymphatic capillaries, they slowly migrate into contracting collecting vessels. Here, lymph flow picks up, inducing T cell detachment and rapid transport to the dLNs. We find that the atypical chemokine receptor 4 (ACKR4), which binds and internalizes CCL19 and CCL21, is induced by lymph flow in endothelial cells lining lymphatic collectors, enabling them to scavenge these chemokines. In the absence of ACKR4, migration of T cells to dLNs in TPA-induced inflammation is significantly reduced. While entry into capillaries is not impaired, T cells accumulate in the ACKR4-deficient dermal collecting vessel segments. Overall, our findings identify an ACKR4-mediated mechanism by which lymphatic collectors facilitate the detachment of lymph-borne T cells in inflammation and their transition from crawling to free-flow toward the dLNs.


Assuntos
Inflamação/metabolismo , Receptores CCR7/metabolismo , Receptores CCR/metabolismo , Linfócitos T/metabolismo , Animais , Movimento Celular/fisiologia , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Humanos , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Camundongos , Pele/metabolismo
11.
Br J Pharmacol ; 179(10): 2223-2239, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34811740

RESUMO

BACKGROUND AND PURPOSE: The cannabinoid CB2 receptor (CB2 ) is a promising therapeutic target for modulating inflammation. However, little is known surrounding the mechanisms underpinning CB2 desensitisation and regulation, particularly the role of GPCR kinases (GRKs). Here, we evaluated the role of six GRK isoforms in ß-arrestin recruitment to CB2 . Mutagenesis of several distal C-terminal aspartic acid residues was also performed in an attempt to delineate additional structural elements involved in the regulation of CB2 . EXPERIMENTAL APPROACH: In CB2 -expressing HEK 293 cells, ß-arrestin translocation was measured using real-time BRET assays. G protein dissociation BRET assays were performed to assess the activation and desensitisation of CB2 in the presence of ß-arrestin 2. KEY RESULTS: Overexpression of GRK isoforms 1-6 failed to considerably improve translocation of either ß-arrestin 1 or ß-arrestin 2 to CB2 . Consistent with this, inhibition of endogenous GRK2/3 did not substantially reduce ß-arrestin 2 translocation. Mutagenesis of C-terminal aspartic acid residues resulted in attenuation of ß-arrestin 2 translocation, which translated to a reduction in desensitisation of G protein activation. CONCLUSION AND IMPLICATIONS: Our findings suggest that CB2 does not adhere to the classical GPCR regulatory paradigm, entailing GRK-mediated and ß-arrestin-mediated desensitisation. Instead, C-terminal aspartic acid residues may act as phospho-mimics to induce ß-arrestin activation. This study provides novel insights into the regulatory mechanisms of CB2 , which may aid in our understanding of drug tolerance and dependence.


Assuntos
Canabinoides , Quinases de Receptores Acoplados a Proteína G , Receptor CB2 de Canabinoide , beta-Arrestina 2 , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HEK293 , Humanos , Fosforilação , Receptor CB2 de Canabinoide/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
12.
Sci Rep ; 11(1): 24414, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952917

RESUMO

The exquisite specificity of Toll-like receptors (TLRs) to sense microbial molecular signatures is used as a powerful tool to pinpoint microbial contaminants. Various cellular systems, from native human blood cells to transfected cell lines exploit TLRs as pyrogen detectors in biological preparations. However, slow cellular responses and limited sensitivity have hampered the replacement of animal-based tests such as the rabbit pyrogen test or lipopolysaccharide detection by Limulus amoebocyte lysate. Here, we report a novel human cell-based approach to boost detection of microbial contaminants by TLR-expressing cells. By genetic and pharmacologic elimination of negative control circuits, TLR-initiated cellular responses to bacterial molecular patterns were accelerated and significantly elevated. Combining depletion of protein phosphatase PP2ACA and pharmacological inhibition of PP1 in the optimized reporter cells further enhanced the sensitivity to allow detection of bacterial lipoprotein at 30 picogram/ml. Such next-generation cellular monitoring is poised to replace animal-based testing for microbial contaminants.


Assuntos
Endotoxinas/análise , Receptores Toll-Like/metabolismo , Humanos , Ligação Proteica , Células THP-1
13.
Front Immunol ; 12: 702453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603281

RESUMO

Dendritic cells (DCs) are potent and versatile professional antigen-presenting cells and central for the induction of adaptive immunity. The ability to migrate and transport peripherally acquired antigens to draining lymph nodes for subsequent cognate T cell priming is a key feature of DCs. Consequently, DC-based immunotherapies are used to elicit tumor-antigen specific T cell responses in cancer patients. Understanding chemokine-guided DC migration is critical to explore DCs as cellular vaccines for immunotherapeutic approaches. Currently, research is hampered by the lack of appropriate human cellular model systems to effectively study spatio-temporal signaling and CCR7-driven migration of human DCs. Here, we report that the previously established human neoplastic cell line CAL-1 expresses the human DC surface antigens CD11c and HLA-DR together with co-stimulatory molecules. Importantly, if exposed for three days to GM-CSF, CAL-1 cells induce the endogenous expression of the chemokine receptor CCR7 upon encountering the clinically approved TLR7/8 agonist Resiquimod R848 and readily migrate along chemokine gradients. Further, we demonstrate that CAL-1 cells can be genetically modified to express fluorescent (GFP)-tagged reporter proteins to study and visualize signaling or can be gene-edited using CRISPR/Cas9. Hence, we herein present the human CAL-1 cell line as versatile and valuable cellular model system to effectively study human DC migration and signaling.


Assuntos
Linhagem Celular Tumoral , Movimento Celular/imunologia , Células Dendríticas/fisiologia , Receptores CCR7/metabolismo , Humanos
14.
Biophys J ; 120(18): 4002-4012, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34411577

RESUMO

Leukocyte microvilli are elastic actin-rich projections implicated in rapid sensing and penetration across glycocalyx barriers. Microvilli are critical for the capture and arrest of flowing lymphocytes by high endothelial venules, the main lymph node portal vessels. T lymphocyte arrest involves subsecond activation of the integrin LFA-1 by the G-protein-coupled receptor CCR7 and its endothelial-displayed ligands, the chemokines CCL21 and CCL19. The topographical distribution of CCR7 and of LFA-1 in relation to lymphocyte microvilli has never been elucidated. We applied the recently developed microvillar cartography imaging technique to determine the topographical distribution of CCR7 and LFA-1 with respect to microvilli on peripheral blood T lymphocytes. We found that CCR7 is clustered on the tips of T cell microvilli. The vast majority of LFA-1 molecules were found on the cell body, likely assembled in macroclusters, but a subset of LFA-1, 5% of the total, were found scattered within 20 nm from the CCR7 clusters, implicating these LFA-1 molecules as targets for inside-out activation signals transmitted within a fraction of a second by chemokine-bound CCR7. Indeed, RhoA, the key GTPase involved in rapid LFA-1 affinity triggering by CCR7, was also found to be clustered near CCR7. In addition, we observed that the tyrosine kinase JAK2 controls CCR7-mediated LFA-1 affinity triggering and is also highly enriched on tips of microvilli. We propose that tips of lymphocyte microvilli are novel signalosomes for subsecond CCR7-mediated inside-out signaling to neighboring LFA-1 molecules, a critical checkpoint in LFA-1-mediated lymphocyte arrest on high endothelial venules.


Assuntos
Quimiocina CCL21 , Antígeno-1 Associado à Função Linfocitária , Linfócitos , Microvilosidades , Receptores CCR7
15.
Sci Signal ; 14(696)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404752

RESUMO

The pleiotropic chemokine CXCL12 is involved in diverse physiological and pathophysiological processes, including embryogenesis, hematopoiesis, leukocyte migration, and tumor metastasis. It is known to engage the classical receptor CXCR4 and the atypical receptor ACKR3. Differential receptor engagement can transduce distinct cellular signals and effects as well as alter the amount of free, extracellular chemokine. CXCR4 binds both monomeric and the more commonly found dimeric forms of CXCL12, whereas ACKR3 binds monomeric forms. Here, we found that CXCL12 also bound to the atypical receptor ACKR1 (previously known as Duffy antigen/receptor for chemokines or DARC). In vitro nuclear magnetic resonance spectroscopy and isothermal titration calorimetry revealed that dimeric CXCL12 bound to the extracellular N terminus of ACKR1 with low nanomolar affinity, whereas the binding affinity of monomeric CXCL12 was orders of magnitude lower. In transfected MDCK cells and primary human Duffy-positive erythrocytes, a dimeric, but not a monomeric, construct of CXCL12 efficiently bound to and internalized with ACKR1. This interaction between CXCL12 and ACKR1 provides another layer of regulation of the multiple biological functions of CXCL12. The findings also raise the possibility that ACKR1 can bind other dimeric chemokines, thus potentially further expanding the role of ACKR1 in chemokine retention and presentation.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Movimento Celular , Quimiocina CXCL12/genética , Sistema do Grupo Sanguíneo Duffy , Humanos , Receptores CXCR4/genética , Receptores de Superfície Celular , Transdução de Sinais
16.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923834

RESUMO

Chemokines guide leukocyte migration in different contexts, including homeostasis, immune surveillance and immunity. The chemokines CCL19 and CCL21 control lymphocyte and dendritic cell migration and homing to lymphoid organs. Thereby they orchestrate adaptive immunity in a chemokine receptor CCR7-dependent manner. Likewise, cancer cells that upregulate CCR7 expression are attracted by these chemokines and metastasize to lymphoid organs. In-depth investigation of CCR7 expression and chemokine-mediated signaling is pivotal to understand their role in health and disease. Appropriate fluorescent probes to track these events are increasingly in demand. Here, we present an approach to cost-effectively produce and fluorescently label CCL19 and CCL21 in a semi-automated process. We established a versatile protocol for the production of recombinant chemokines harboring a small C-terminal S6-tag for efficient and site-specific enzymatic labelling with an inorganic fluorescent dye of choice. We demonstrate that the fluorescently labeled chemokines CCL19-S6Dy649P1 and CCL21-S6Dy649P1 retain their full biological function as assessed by their abilities to mobilize intracellular calcium, to recruit ß-arrestin to engaged receptors and to attract CCR7-expressing leukocytes. Moreover, we show that CCL19-S6Dy649P1 serves as powerful reagent to monitor CCR7 internalization by time-lapse confocal video microscopy and to stain CCR7-positive primary human and mouse T cell sub-populations.


Assuntos
Citometria de Fluxo/métodos , Engenharia de Proteínas/métodos , Receptores CCR7/metabolismo , Animais , Movimento Celular , Células Cultivadas , Corantes Fluorescentes/química , Células HeLa , Humanos , Leucócitos/citologia , Leucócitos/metabolismo , Leucócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR7/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Blood Adv ; 5(1): 99-112, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33570638

RESUMO

The release of newly selected αßT cells from the thymus is key in establishing a functional adaptive immune system. Emigration of the first cohorts of αßT cells produced during the neonatal period is of particular importance, because it initiates formation of the peripheral αßT-cell pool and provides immune protection early in life. Despite this, the cellular and molecular mechanisms of thymus emigration are poorly understood. We examined the involvement of diverse stromal subsets and individual chemokine ligands in this process. First, we demonstrated functional dichotomy in the requirement for CCR7 ligands and identified CCL21, but not CCL19, as an important regulator of neonatal thymus emigration. To explain this ligand-specific requirement, we examined sites of CCL21 production and action and found Ccl21 gene expression and CCL21 protein distribution occurred within anatomically distinct thymic areas. Although Ccl21 transcription was limited to subsets of medullary epithelium, CCL21 protein was captured by mesenchymal stroma consisting of integrin α7+ pericytes and CD34+ adventitial cells at sites of thymic exit. This chemokine compartmentalization involved the heparan sulfate-dependent presentation of CCL21 via its C-terminal extension, explaining the absence of a requirement for CCL19, which lacks this domain and failed to be captured by thymic stroma. Collectively, we identified an important role for CCL21 in neonatal thymus emigration, revealing the importance of this chemokine in initial formation of the peripheral immune system. Moreover, we identified an intrathymic mechanism involving cell-specific production and presentation of CCL21, which demonstrated a functional synergy between thymic epithelial and mesenchymal cells for αßT-cell emigration.


Assuntos
Emigração e Imigração , Linfócitos T , Animais , Animais Recém-Nascidos , Camundongos , Receptores CCR7/genética , Células Estromais
18.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514551

RESUMO

Glucocorticoids (GC), synthesized by the 11ß-hydroxylase (Cyp11b1), control excessive inflammation through immunosuppressive actions. The skin was proposed to regulate homeostasis by autonomous GC production in keratinocytes. However, their immunosuppressive capacity and clinical relevance remain unexplored. Here, we demonstrate the potential of skin-derived GC and their role in the regulation of physiological and prevalent inflammatory skin conditions. In line with 11ß-hydroxylase deficiency in human inflammatory skin disorders, genetic in vivo Cyp11b1 ablation and long-term GC deficiency in keratinocytes primed the murine skin immune system resulting in spontaneous skin inflammation. Deficient skin GC in experimental models for inflammatory skin disorders led to exacerbated contact hypersensitivity and psoriasiform skin inflammation accompanied by decreased regulatory T cells and the involvement of unconventional T cells. Our findings provide insights on how skin homeostasis and pathology are critically regulated by keratinocyte-derived GC, emphasizing the immunoregulatory potential of endogenous GC in the regulation of epithelial immune microenvironment.


Assuntos
Glucocorticoides , Esteroide 11-beta-Hidroxilase , Animais , Homeostase , Humanos , Inflamação/patologia , Queratinócitos , Camundongos , Pele/patologia
19.
Haematologica ; 106(8): 2102-2113, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32616529

RESUMO

Adhesive properties of leukemia cells shape the degree of organ infiltration and the extent of leukocytosis. CD44 and the integrin VLA-4, a CD49d/CD29 heterodimer, are important factors of progenitor cell adhesion in bone marrow (BM). Here, we report their cooperation in acute myeloid leukemia (AML) by a novel non-classical CD44-mediated way of inside-out VLA-4 activation. In primary AML BM samples from patients and the OCI-AML3 cell line, CD44 engagement by hyaluronan induced inside-out activation of VLA-4 resulting in enhanced leukemia cell adhesion on VCAM-1. This was independent from VLA-4 affinity regulation but based on ligand-induced integrin clustering on the cell surface. CD44-induced VLA-4 activation could be inhibited by the Src family kinase inhibitor PP2 and the multikinase inhibitor midostaurin. In further consequence, the increased adhesion on VCAM-1 allowed AML cells to strongly bind stromal cells. Thereby VLA-4/VCAM-1 interaction promoted activation of Akt, MAPK, NF-kB and mTOR signaling and decreased AML cell apoptosis. Collectively, our investigations provide a mechanistic description of an unusual CD44 function in regulating VLA-4 avidity in AML, supporting AML cell retention in the supportive BM microenvironment.


Assuntos
Integrina alfa4beta1 , Leucemia Mieloide Aguda , Medula Óssea , Adesão Celular , Humanos , Receptores de Hialuronatos/genética , Microambiente Tumoral , Molécula 1 de Adesão de Célula Vascular/genética
20.
Front Immunol ; 11: 550824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072091

RESUMO

The chemokine receptor CXCR4 plays a fundamental role in homeostasis and pathology by orchestrating recruitment and positioning of immune cells, under the guidance of a CXCL12 gradient. The ability of chemokines to form heterocomplexes, enhancing their function, represents an additional level of regulation on their cognate receptors. In particular, the multi-faceted activity of the heterocomplex formed between CXCL12 and the alarmin HMGB1 is emerging as an unexpected player able to modulate a variety of cell responses, spanning from tissue regeneration to chronic inflammation. Nowadays, little is known on the selective signaling pathways activated when CXCR4 is triggered by the CXCL12/HMGB1 heterocomplex. In the present work, we demonstrate that this heterocomplex acts as a CXCR4 balanced agonist, activating both G protein and ß-arrestins-mediated signaling pathways to sustain chemotaxis. We generated ß-arrestins knock out HeLa cells by CRISPR/Cas9 technology and show that the CXCL12/HMGB1 heterocomplex-mediated actin polymerization is primarily ß-arrestin1 dependent, while chemotaxis requires both ß-arrestin1 and ß-arrestin2. Triggering of CXCR4 with the CXCL12/HMGB1 heterocomplex leads to an unexpected receptor retention on the cell surface, which depends on ß-arrestin2. In conclusion, the CXCL12/HMGB1 heterocomplex engages the ß-arrestin proteins differently from CXCL12, promoting a prompt availability of CXCR4 on the cell surface, and enhancing directional cell migration. These data unveil the signaling induced by the CXCL12/HMGB1 heterocomplex in view of identifying biased CXCR4 antagonists or agonists targeting the variety of functions it exerts.


Assuntos
Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Receptores CXCR4/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo , Actinas/química , Actinas/metabolismo , Sistemas CRISPR-Cas , Quimiotaxia , Edição de Genes , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Multimerização Proteica , Transporte Proteico , beta-Arrestina 1/genética , beta-Arrestina 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...